Energy Dependence of the Ruthenium(II)-Bipyridine Metal-to-Ligand-Charge-Transfer Excited State Radiative Lifetimes: Effects of ππ*(bipyridine) Mixing.

نویسندگان

  • Ryan A Thomas
  • Chia Nung Tsai
  • Shivnath Mazumder
  • I Chen Lu
  • Richard L Lord
  • H Bernhard Schlegel
  • Yuan Jang Chen
  • John F Endicott
چکیده

The variations in band shape with excited state energy found for the triplet metal to ligand charge transfer ((3)MLCT) emission spectra of ruthenium-bipyridine (Ru-bpy) chromophores at 77 K have been postulated to arise from excited state/excited state configurational mixing. This issue is more critically examined through the determination of the excited state energy dependence of the radiative rate constants (kRAD) for these emissions. Experimental values for kRAD were determined relative to known literature references for Ru-bpy complexes. When the lowest energy excited states are metal centered, kRAD can be anomalously small and such complexes have been identified using density functional theory (DFT) modeling. When such complexes are removed from the energy correlation, there is a strong (3)MLCT energy-dependent contribution to kRAD in addition to the expected classical energy cubed factor for complexes with excited state energies greater than 10 000 cm(-1). This correlates with the DFT calculations which show significant excited state electronic delocalization between a π(bpy-orbital) and a half-filled dπ*-(Ru(III)-orbital) for Ru-bpy complexes with (3)MLCT excited state energies greater than about 16 000 cm(-1). Overall, this work implicates the "stealing" of emission bandshapes as well as intensity from the higher energy, strongly allowed bpy-centered singlet ππ* excited state.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Observations on the low-energy limits for metal-to-ligand charge-transfer excited-state energies of ruthenium(II) polypyridyl complexes.

The 77 K emission spectral maxima of bis(bipyridine)ruthenium(II) complexes are found to approach a limit at energies below about 14,000 cm(-1). There is also evidence for related low-energy excited-state limits in some other classes of ruthenium polypyridyl complexes. The shapes of the vibronic sidebands found in these limits differ from those of complexes that emit at higher energies. These l...

متن کامل

Synthesis and spectroscopic characterization of CN-substituted bipyridyl complexes of Ru(II).

A series of ruthenium complexes having the general form [Ru(bpy)(3-n)(CN-Me-bpy)(n)](PF(6))(2) (where bpy = 2,2'-bipyridine, CN-Me-bpy = 4,4'-dicyano-5,5'-dimethyl-2,2'-bipyridine, and n = 1-3 for complexes 1-3, respectively) have been synthesized and characterized using a variety of steady-state and nanosecond time-resolved spectroscopies. Electrochemical measurements indicate that the CN-Me-b...

متن کامل

Ultrafast Solvent Induced Charge Localization in Tris-[2,2'-Bipyridine] Ruthenium(II)

Two distinct excited state processes are resolved in tris-[2,2'-bipyridine] ruthenium(II). Time resolved anisotropy measurements reveal a solvent dependent depolarization indicative of charge localization. Transient absorption measurements resolve wavepacket motion on the excited state surface(s) independent of solvent. Tris-(2,2'-bipyridine)ruthenium (II) or [Ru(bpy)3] is the prototype to stud...

متن کامل

Are Very Small Emission Quantum Yields Characteristic of Pure Metal-to-Ligand Charge-Transfer Excited States of Ruthenium(II)-(Acceptor Ligand) Chromophores?

Metal to ligand charge-transfer (MLCT) excited state emission quantum yields, ϕem, are reported in 77 K glasses for a series of pentaammine and tetraammine ruthenium(II) complexes with monodentate aromatic acceptor ligands (Ru-MDA) such as pyridine and pyrazine. These quantum yields are only about 0.2-1% of those found for their Ru-bpy (bpy = 2,2'-bipyridine) analogs in similar excited state en...

متن کامل

Tuning the Excited-State Properties of Platinum(II) Diimine Dithiolate Complexes

Two series of Pt(diimine)(dithiolate) complexes have been prepared in order to investigate the effects of molecular design on the excited-state properties of this chromophore. The first series comprises Pt(dbbpy)(dithiolate) complexes where dbbpy ) 4,4′-di-tert-butyl-2,2′-bipyridine and the dithiolates are 1-(tert-butylcarboxy)-1cyanoethylene-2,2-dithiolate (tbcda), 1-diethylphosphonate-1-cyano...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 119 24  شماره 

صفحات  -

تاریخ انتشار 2015